翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

generalized dihedral group : ウィキペディア英語版
generalized dihedral group
In mathematics, the generalized dihedral groups are a family of groups with algebraic structures similar to that of the dihedral groups. They include the finite dihedral groups, the infinite dihedral group, and the orthogonal group ''O''(2).
==Definition==
For any abelian group ''H'', the generalized dihedral group of ''H'', written Dih(''H''), is the semidirect product of ''H'' and Z2, with Z2 acting on ''H'' by inverting elements. I.e., \mathrm(H) = H \rtimes_\phi Z_2 with φ(0) the identity and φ(1) inversion.
Thus we get:
:(''h''1, 0)
* (''h''2, ''t''2) = (''h''1 + ''h''2, ''t''2)
:(''h''1, 1)
* (''h''2, ''t''2) = (''h''1 − ''h''2, 1 + ''t''2)
for all ''h''1, ''h''2 in ''H'' and ''t''2 in Z2.
(Writing Z2 multiplicatively, we have (''h''1, ''t''1)
* (''h''2, ''t''2) = (''h''1 + ''t''1''h''2, ''t''1''t''2) .)
Note that (''h'', 0)
* (0,1) = (''h'',1), i.e. first the inversion and then the operation in ''H''. Also (0, 1)
* (''h'', ''t'') = (−''h'', 1 + ''t''); indeed (0,1) inverts ''h'', and toggles ''t'' between "normal" (0) and "inverted" (1) (this combined operation is its own inverse).
The subgroup of Dih(''H'') of elements (''h'', 0) is a normal subgroup of index 2, isomorphic to ''H'', while the elements (''h'', 1) are all their own inverse.
The conjugacy classes are:
*the sets
*the sets
Thus for every subgroup ''M'' of ''H'', the corresponding set of elements (''m'',0) is also a normal subgroup. We have:
::Dih(''H'') ''/'' ''M'' = Dih ( ''H / M'' )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「generalized dihedral group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.